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The chessboard model is reviewed and reformulated as a four-state process. In 
this formulation both the Dirac propagator of the chessboard model and the 
partition function of the associated Ising chain are observed to be projections of 
a single matrix of partition functions onto two orthogonal eigenspaces. This 
helps clarify the role played by the phase associated with Feynman paths in this 
model. 
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1. I N T R O D U C T I O N  

The one-dimensional  Ising model  is a very useful "pro to type"  system in 
statistical physics. On  one hand, the system is sufficiently simple that  it 
permits a number  of exact solutions under the right circumstancesJ 1 3) On  
the other  hand, the physics is sufficiently rich that  it provides valuable 
insight into a wide range of problems. (4 7) 

One of  the more  intriguing aspects of the one-dimensional Ising model  
is its connect ion with the Feynman  chessboard model  ( F C M )  first pointed 
out by Gersch. (8) The model  itself was originally proposed by Feynman  (9) 
as an illustration of the path integral approach  to quan tum mechanics in 
a relativistic context. 

In Section 2 we shall sketch Gersch's  derivation to establish the con- 
nection between the quan tum problem and classical statistical mechanics. 

In Section 3 we pursue the quan tum~lass ica l  analogy further by refor- 
mulat ing the F C M  as a four-state process. In this formulat ion both  the 
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quantum and classical problems are seen as projections of the same 
problem onto two different eigenspaces. This makes the "statistical roots" 
of the F C M  rather more transparent than in previous formulations. 

2. T H E  F E Y N M A N  C H E S S B O A R D  M O D E L  

Feynman and Hibbs (4) proposed a relativistic model for a particle 
moving in one spatial dimension. In their model the particle was con- 
strained to move with speed c =  1 on a space-time lattice with lattice 
spacing e. The kernel K(b, a) for a particle to propagate from position a at 
time ta to position b at time tb was given by 

K(b, a) = ~ N(R)(iem) R (2.1) 
R 

where the sum is over all forward "bishop's moves" connecting the space- 
time points. The set of such paths (Fig. 1) is subdivided into paths with R 
corners, and any path with R corners is given the weight (iem) R. Here N(R) 
is the number  of paths with R corners. In the limit as e ~ 0, provided 
(b--a)/(tb--ta)'~ 1, the above sum over paths approaches the correct 
Dirac free-particle kernel. 

The connection between the above sum and the partition function of 
a one-dimensional Ising model  has been established by Gersch, ~8) with a 
more detailed account by Jacobson and Schulman31~ Here we shall briefly 
sketch the arguments involved, and refer the interested reader to the above 
two articles for more detailed treatments. 

Referring to Fig. 1, we can see that the Feynman paths in this model 
are constructed from only two kinds of elementary "links." These links may 

F e ~ m ~ P a t h s  

2 4 6 

x 

Fig. 1. Typical path in the Feynman sum. 
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be labeled as + or - according to their displacement in the x direction. 
The + links correspond to a particle moving in the positive x direction for 
a time e, and the - links correspond to a particle moving in the negative 
x direction for a time e. Note that at any lattice point on the t axis, ti say, 
the displacement of the path x(ti) =- xi is simply xf = x~ i + eo~_ ,, where 
o~ t =  _+ 1 is an Ising spin variable. This suggests that we may represent 
any N-step Feynman path by a set of N spins {o,, o 2 ..... ON}. Each path 
will correspond to a unique configuration of these N spins, and the dis- 
placement x(ti) of the path will be e times the displacement of the ith spin 
in magnetization space. The "corners" in the Feynman paths correspond to 
adjacent antiparallel spins (or domain boundaries) in the spin chain. Since 
the Feynman sum (2.1) weights such corners, we notice that in the spin 
chain description the function � 8 9  is 1 if o~ and o~+, are 
antiparallel and 0 if they are parallel. This function conveniently counts the 
domain boundaries in the spin chain when summed on i. Finally, we note 
that the "corner weight" in (2.1) is imaginary. This corresponds to the 
Feynman "phase rule," which associates a quantum phase change of ~/2 for 
each corner in the path. 

In order to maintain the Ising analogy, we shall replace the corner 
weight of (iern) in Eq. (2.1) with the real positive weight (ern), in which case 
the kernel (2.1) is replaced by a partition function of an Ising chain. 
(We may later recover the FCM by replacing rn by im.) That is, we now 
consider 

:~ONO,(X, N, ~) = ~ N(R)(~m) R 
R 

= ~ Z "'" Z (em) (z'~--'' I~ .,0.,+0)/2 (2.2) 
o"2 +_i 0" 3 - -  -}-i 6"N_ I 

where the sums over a2 ..... oN_, include only those configurations for 
which the magnetization is fixed at X (i.e., YlNi=I Oi= X). Here we have 
omitted the sum over the initial and final spins o, and oN, so that 
~;'ON0"L(X, N, e) is a matrix of partition functions whose elements are labeled 
by the spins at the beginning and end of the chain. We shah now refer to 
~e as a partition function, since its matrix character is unimportant in the 
]sing context. 

The sum in (2.2) is still awkward to calculate because of the constraint 
of fixed magnetization. To avoid this constraint, we consider the lattice 
Fourier transform of ~ in magnetization space, i.e., define 

N 

Z~N0.,( p, N, ~)= ~ e-'XP~Y(X, N, e) (2.3) 
X =  N 
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Now, if we define the nearest neighbor interaction strength (in units of 
k T) as 

j = --�89 ln(em) (2.4) 

we can write (2.3) as 

Z,,N~,( p , w , e ) =  ~ ... E 
o- 2 -  •  a N  T = •  

x exp - ipe  2 a , + j  2 ( a r i a n + l - 1  (2.5) 
n = l  n = l  

Here the Ising sum is unconstrained and (2.5) may be evaluated using a 
transfer matrix. Before we perform the evaluation, we consider the role of 
e in (2.5). From the analogy between the spin chain and the kernel (2.1) we 
are interested in the limit as e--* 0. In this limit j goes to infinity (or the 
temperature goes to zero), so that domain boundaries become less and less 
frequent. If we fix N at any finite value as e ~ 0, we shall simply recover the 
uninteresting ferromagnetic ground state of the one-dimensional Ising 
model. If, however, in the spirit of the kernel (2.1), we consider a sequence 
of lattice spacings e in which t = Ne is fixed, the limit e ~ 0 is more interesting. 
In this limit the probability per spin of finding a domain boundary is 
proportional to e 2j= em. However, the number of spins per "unit chain 
length" (or per unit time in the FCM picture) is 1/e. Thus, the expected 
domain size (or time between corners) is proportional to 1/m. In the Ising 
system the limit we are contemplating is one in which the size of the system 
and the temperature are related in such a way that the expected number of 
domains is fixed as T ~ 0. 

With this in mind, we evaluate (2.5). Consider the 2 x 2 transfer matrix 

[ i , J T(a, a ' ) = e x p  - -~pe(a+a ) + j ( a # -  1) (2.6) 

In terms of this matrix the sum (2.5) is 

Z~u~l( p, N, e) = e ip,(o~ + •N)/2( TN-  I ),N, ' (2.7) 

This is a standard result which simply recognizes that the summations 
in Eq. (2.5) correspond exactly to the summations involved in the matrix 
product T N -  1. However, since we shall later want to avoid writing summa- 
tions like (2.5) explicitly, it is worthwhile interpreting the transfer matrix 
directly. Explicitly, the transfer matrix T is 

(e-ip~ e 2J']=(e-i'~ em) 
T a  \ e 2y eipe j \ em e ipe (2.8) 
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where we have used Eq. (2.4) for the off-diagonal Boltzmann factors. 
To see that this matrix does "count" weighted configurations of the spin 
chain, note that the diagonal entries in the matrix simply correspond to 
"transitions" from one spin to a spin of the same sign. This raises or lowers 
the magnetization by one unit in the "counting variable" - ep .  The 
off-diagonal terms correspond to transitions from one spin to another spin 
of the opposite sign. This contributes a domain boundary weight of em, but 
does not change the magnetization. For  example, if we consider T 2, we 
have 

T2 _ ( e 2ipe _{_ aZm2 am(e ipe + e ip~)) 
-- \em(eipe+e_ip~ ) e+2ip~+a2m 2 ] (2.9) 

The (1, 1) element of T 2 simply counts the weighted configurations of 
chains of length 3 which begin and end with al = a3 = +1. The term e :ip~ 
corresponds to the configuration al =0-2=ff3 = +1 and the two added 
spins 0-2 and a 3 contribute the magnetization 2pc. The term (am) x 
corresponds to the spin triple (+  1, - 1 ,  + 1), which has two boundaries, 
and the added spins 0 2 and 0"3 contribute nothing to the magnetization. 
Similarly, the (1,2) element of T 2 corresponds to the spin triples 
( - 1, + 1, + 1 ), and ( - 1, - 1, + 1 ), respectively. 

In general, then, the (o"N, 0"1) element of T u will be a polynomial in 
the exponential (ei~P). The coefficient of e -iM~p in this polynomial will be a 
power series in the variable (am), i.e., 

N C(M,  R)(am) R (2.10) e 

M = - - N  0 

Here C(M, R)  is the number of configurations with R domain boundaries 
such that ~N ,=2 0", = M. The sum in brackets is the fixed magnetization 
partition function Y" of Eq. (2.2). 

The point of making explicit this calculation is then twofold. First of 
all let us note that finding the term in brackets in Eq. (2.10) by inverting 
the discrete Fourier transform is considerably easier than evaluating the 
constrained sum in Eq. (2.2) directly. 

The second pertinent observation is that the transfer matrix T itself is 
sufficiently simple that if we wish to generalize this problem in any way, it 
may well be easier to write down the transfer matrix directly without 
having to construct an explicit spin formulation. This fact will be used in 
the next section. 

We now return to the evaluation of the transformed partition function 
Z(p ,  N, a), Eq. (2.7). We write 

T = 2 + P  ++)~ P -  (2.11) 
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where 2_+ are the eigenvalues of T with corresponding orthogonal projec- 
tors P_+. We then have from (2.7), for small e, 

Z(p, N, e) = (2u+-IP + + 2N_-IP - )  (2.12) 

and the partition function problem is reduced to finding the eigenvalues 
and eigenvectors of T. Since we are interested in the limit as e ~ 0, we 
expand T to first order in e and find that 

( 1 -  i~p ~m ) 
+ O(e 2) (2.13) 

T = \  em l + iep 

and to lowest order in 
2+_ = 1 -t- e(m ~ _p2)~/2 (2.14) 

Both eigenvalues are real and positive for small e (p2> m 2 corresponds to 
the unphysical situation of M >  N) and as usual the larger eigenvalue 2+ 
will dominate. 

If we now fix the chain length at t = N~ and consider the limit as e ~ 0, 
we find that 

(/~+)N--1 ..~ I-1 + e(m 2 _ p2)m]t/~ ~ e(mZ-p2)'/2t (2.15) 

Thus, in this limit the partition function (2.12) becomes 

Z(p, t )=e  (m2 Pz)I/2tP + 

In the limit p 2 ~ m 2  corresponding to chains with 
magnetization this is 

Z(p, t) ~- era'e-(l/2m)pZtP + 

(2.16) 

small endpoint 

The form of Eq. (2.17) suggests that since Z is Gaussian in p, the chain end 
magnetization will also be Gaussian as appropriate to a "diffusive" process. 
We note that this "diffusive" character of the magnetization is a conse- 
quence of the reality of the eigenvalues of T in Eq. (2.14). Physically, this 
is what we expect, since in zero magnetic field the chain magnetization 
simply executes a random walk in magnetization space. 

Thus far we have considered only the Ising problem with real weights. 
However, to consider the FCM with imaginary weights, we simply return 
to Eq. (2.12), and in the subsequent discussion replace m by im everywhere. 
Thus for the FCM the transfer matrix is 

T F = (  1-i~pt~m 1 ~m~p) + O(ez) (2.18) 

(2.17) 
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The eigenvalues are 

with 

2+ = 1 4- i~E (2.19) 

E =  (m 2 ..[_ p2) u2 (2.20) 

Note that here the eigenvalue are complex and of equal modulus. Both 
eigenvalues will contribute to the propagator in (2.12). Repeating the 
arguments preceding Eq. (2.16), one finds that the expression analogous to 
(2.16) is 

K(p,  t) = iE,.. + e r F + e i E t p  F (2.21) 

where K is now a propagator for the Feynman problem and P~ are the 
projection operators corresponding to the two eigenvalues in (2.19). 
Calculating P~ explicitly, one finds (8~ 

K , l ( p  , t) = �89 + p / E )  e ,E, + �89 - p / E )  e '~' (2.22) 

K22(P, t) = �89 - p / E )  e w,+ �89 + p / E )  e w' (2.23) 

K12(P , t) = -(1/2E) e - r e ' +  (1/2E) e ie' 

= K21(P, t) (2.24) 

The kernels K(z, t) may be obtained from the above by inverting the 
Fourier transform, i.e., 

/-+zc do 
Kl l (x ,  t ) =  J-o~ ~ e~pxKll(P' t) (2.25) 

The momentum space kernels (2.22)-(2.24) are the same as those obtained 
from the Dirac equation. (1~ 

Now the difference between the partition function of the Ising problem 
and the kernel of the Feynman problem lies primarily in the characteristics 
of the eigenvalues of the transfer matrix. (For a detailed discussion of this 
see the article by Jacobson and Schulman. (1~ 

The complex exponentials arising in the propagator (2.22)-(2.24) are 
a direct result of the complex eigenvalues in Eq. (2.19). These in turn are 
a consequence of the imaginary "corner weights" iem in the off-diagonal 
elements of the transfer matrix in (2.18). However, as soon as we use 
imaginary boundary weights, we lose any direct interpretation through 
classical statistical mechanics. This raises the question, "Is there a formula- 
tion of the FCM in which the transfer matrix has real 'corner weights,' and 
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the propagator arises directly from a 'classical' partition function calcula- 
tion?" The answer to this question is "yes," as we shall see in the following 
section. 

3. The  R e f o r m u l a t i o n  

In the previous section the sum over paths, Eq. (2.1), could equally 
well be written for finite e as 

K(b, a)= ~ N(R)(em) R - ~ N(R)(~m) R 
R = 0 , 4 , 8 , . . .  R - -  2 , 6 , 1 0 , . . .  

+ i (  ~ N(R)(em) R- ~ N(R)(em) e) (3.1) 
R 1 5 R = 3 , 7  .... = , ,... 

Note that here, each separate sum over paths has a real weight. In this 
form a clear distinction can be made between the classical partition func- 
tion of the spin problem and the quantum propagator. Any classical parti- 
tion function represents a sum over independent configurations. From a 
statistical point of view the minus signs in (3.1) allow the configurations of 
the ensemble to interfere with each other. They give rise to the "sum over 
interfering alternatives" of the path integral formulation. 

However, each separate sum in (3.1) is simply a classical sum, and we 
can formulate the problem in a way that allows us to calculate each sum 
separately. The reason for doing this is that it allows us to keep the 
"statistical" problem completely in the 'realm of classical statistical 
mechanics, where interpretation is simple. In this way we hope to make the 
role of phase in the quantum problem more transparent. 

In accordance with (3.1), we see that there are actually four states in 
the quantum problem. For  example, the spin sequences or paths 
( + , - ,  + , - ,  + )  and ( + ,  +,  , , + )  have the same magnetization 
(displacement), but since they differ by two boundaries (corners), they dif- 
fer in sign in their contribution to the Feynman sum. We can account for 
this if we suppose that the end spins of the two chains are in two different 
"states." In the previous formulation the two states were uniquely defined 
by the direction of motion. In this formulation we will have to duplicate 
both states. For  example, if we imagine building a sequence of spins and 
asking at each step, "which sum in Eq. (3.1) would this sequence contribute 
to if it terminated here?" we would find that the same pattern is always 
repeated. That is, the sequence would contribute to the first sum until the 
first reversed spin was added. It would then contribute to the third sum 
until the second domain boundary was encountered, at which point it 
would contribute to the second sum. At the next reversal the contribution 
would switch to the fourth sum, and finally after four boundaries the con- 
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tribution would revert back to the first sum. The repeating sequence is 
1 ~ 3 ~ 2 - ,  4 ~ 1 in the above sums. 

We now consider assigning four possible states to a given spin, 
depending on its contribution to the Feynman sum (3.1). States 1 and 2, 
which are identical in the Ising system, but which differ by a minus sign in 
the Feynman sum, both corresponding to a right step or spin + 1. States 
3 and 4 both correspond to a left step or spin - 1 .  Now consider the 
transfer matrix 

( I e -  iP~ 0 0 im i 0 e - ip~ ~m 
T4 = em 0 e + ip~ 

0 em 0 e+iP~/ 

Looking at the diagonal 

(3.2) 

elements, 1 ~ 1 and 2 ~ 2  transitions both 
increase the magnetization "counter" - p s  and 3 ~ 3 and 4 ~ 4 transitions 
decrease the magnetization, as they should. Looking at each column in 
turn, 1-~ 3, 2 ~ 4, 3 ~ 2, and 4 ~ 1 are the only state changes allowed, 
reproducing the pattern 1 ~ 3 ~ 2 ~ 4 required by the Feynman sum (3.1). 
T4 will simply "count contributions" to the desired sum, as did T and T F 
in the previous section. Equations (2.11) and (2.12) have simple extensions 
to the 4 x 4 system and the calculation is straightforward. We now have 
only to consider "contraction" back to the 2 x 2 versions of the previous 
section. 

Now in the Ising problem there is no distivction between states 1 and 
2 or betwen states 3 and 4. Furthermore, there is no "phase" distinction 
between the first two and last two "states." In terms of the sums in (3.1), 
this means that in the Ising equivalent there is no i and no minus signs. To 
contract to the 2 x 2 representation for the Ising system, we simply have to 
merge the states 1 and 2, as well as 3 and 4. That  is, we regard states 1 and 
3 as being the "real" states of the Ising system. We "start" all configurations 
in states 1 and 3, and we merge equivalent states at the end of the calcula- 
tion. 

For  example, a matrix element from state 1 to state 2 in the 2 x 2 Ising 
system will correspond to the sum of two matrix elements in the 4 x 4  
representation, i.e., 1 ~ 3 + 1 --, 4. To accomplish the "contraction" through 
matrix multiplication, consider the "starting contractor" 

c ti i) (3.3) 
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and the "merging contractor" 

c * = ( ~  1 0 0 1 0 1 )  (3.4) 

If A = [ao ] is a general 4 x 4 matrix, then 

c,Ac=(a11+a21 a13+a23) (3.5) 
\a31 -~ a41 a33 -~ a43// 

Thus, left and right multiplication by c* and c, respectively, provides the 
desired contraction to the 2 • 2 Ising representation. In particular, we note 
that 

e ipe em ) 
c*T4C=ke m e+ip ~ (3.6) 

This is precisely the transfer matrix of the Ising chain (2.8). 
Similar considerations for the Feynman problem suggest the quantum 

contractors 

q = _ (3.7) 

and 

q* = (3.8) 
0 + i  - 

We find that 

/ e - ipe iem 
q*T4q = ~ i~m e+iP~J (3.9) 

This is the transfer matrix (2.18) for the Feynman problem. 
We are now in a position to formulate both the Ising and Feynman 

problems in terms of T4. The Ising partition function is 

Z(p, t) = c*[l im T '/~] c 
~ 0  

= c*[lim (2~'P~+2'S~P~+2'3/~P3+U4/~P4)]c (3.10) 
8 ~ 0  
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and the Feynman kernel is similarly 

K(p, t) = q*[lim T~/"]q 
~ 0  

(3.1~) 

where here the 2K and PK are the eigenvalues and corresponding projection 
operators of T4. Notice that the statistical problem of counting configura- 
tions is now the same for both the Ising and Feynman cases. We choose 
to "input" quantum phase differences (or not) at the contraction stage by 
choosing the contractors (q*, q) [-or (c*, c)]. 

To see how this works, we calculate the eigenvalues and projectors of 
T4. The eigenvalues are found to be 

and 

2~ = 1 -t- ie(m 2 +p2)1/2 =_ 1 +_ ieE (3.i2) 

2r+_ = 1 ++_ e(m 2 _p2)~/2 = 1 • eF (3.13) 

The complex eigenvalues (3.12) are precisely those of the Feynman 
problem (2.19), and the real eigenvalues (3.13) are those of the Ising 
problem (2.14). The orthogonal projection operators of (3.10) are readily 
computed. For example, the projectors for the eigenvalue 2~ are 

= ( ( 1 - T - p / E ) S  + ( i m / E ) S - )  (3.14) 
pc+ \ - - ( im /E)27  ( I •  

with 

, ( 1 - i )   315, S --=~ - 1  

The projectors for the real eigenvalues are 

P+ = ((1 -T- ip /F)S (m /F)S  
- (m/F)~  (1 -t- ip/r)22] (3.16) 

with 

A quick check shows that the contractors q* and q "select" the 
complex eigenvalues. That is, 

q*P~ q = 0 
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and the real eigenvalues which control the spin problem are removed from 
the kernel calculation (3.11). We are then left with 

K ( p ,  t) = lim * c,,, c 2,.t/~p, , q (2+P+ + )q (3.18) 
e ~ 0  

This reduces to the 2 x 2 system of equations (2.22)-(2.24). 
Similarly, if we replace the quantum contractors q and q* with the 

classical contractors c and c*, we find that c * P ~  c = 0 and the real eigen- 
values are selected. If we then find the partition function of Eq. (3.10), this 
reduces to 

Z ( p ,  t)  = c* lira r t f ~  r + 2r'/~P r ] c L \ ' ~ + - - +  
s--~O 

(3.19) 

This in turn reduces to Eq. (2.16). 
To summarize, we have now reformulated both the Ising and 

chessboard problems so that their relationship may be closely inspected. In 
the 4 x 4 formulation the transfer matrix T4 is a completely "classical" 
object in that it calculates the Fourier transforms of classical partition 
functions. [Note that the presence of complex exponentials in T4, (3.2), 
reflects only the counting involved in the Fourier transform. The i in these 
exponentials has nothing to do with any quantum mechanical phase.] In 
spite of this, T4 contains all the information necessary to form both the 
Feynman propagator and the Ising partition function. Both of these 
quantities are obtained by projection of T~ v onto two separate eigenspaces. 

On one hand, the fact that T4 contains all the information necessary 
to solve both problems is not surprising, since we designed T4 to calculate 
separately the Fourier transforms of each of the sums in Eq. (3.1). On the 
other hand, previous formulations of the FCM related the "quantum 
mechanical" nature of the propagator directly to the presence of imaginary 
corner weights in the transfer matrix, and consequently to the resulting 
complex eigenvalues. These imaginary corner weights removed the calcula- 
tion from the domain of classical statistical mechanics. This raises the 
question, "How does the classical object T4 'know' about the quantum 
calculation and the corresponding complex eigenvalues?" Upon inspection 
of T4, one can see that the answer to this is simply that it is the periodic 
structure of T4 which generates the complex eigenvalues, and the "quantum 
propagator" is obtained by simply exploiting this periodicity in the "right" 
way. Ignoring the periodicity and merging the appropriate states gave us 
the Ising partition function. Fully distinguishing the four states with the 
phases of Eq. (3.1) gave us the Dirac kernel. However, in both cases the 
calculation of the path statistics is the same. 
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4. C O N C L U S I O N S  

The Feynman  chessboard model  has recently received attention in a 
classical context as a description of semiflexible polymers. (11) Like the 
underlying one-dimensional  Ising model,  the F C M  has the virtue of being 
a simple system which nonetheless provides a graphic illustration of some 
complex physics. 

The new formulat ion in which a four-state transfer matrix is the 
central object displays the relation between the statistical geometry of the 
paths and the phases of the paths in a particularly t ransparent  way. The 
statistics of  both  the quan tum and classical versions of the problem are 
obtained from the same eigenvalue.calculation. The p ropaga to r  and parti- 
t ion function are both  extracted as projections onto different eigenspaces. 

The end result is that  a link is established between the Feynman  phase 
rule on one hand, and an eigenspace of a classical walk on the other. In a 
subsequent publication we shall use this link to show that  the Feynman  
phase rule itself has a direct ancestor within classical physics. This 
ancestor is the "classical antiparticle" of  Wheeler and Feynman  (12) and 
Stuckelberg. (1 ~ 
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